Investigation on the influence of cutting parameters on Machine tool Vibration & Surface finish using MEMS Accelerometer in high precision CNC milling machine

نویسنده

  • Megha Agrawal
چکیده

The purpose of this research is to investigate on the influences of cutting parameters on machine tool vibration & surface finish using MEMS Accelerometer in high precision CNC milling machine. The cutting parameters considered are depth of cut, feed rate and spindle speed. In this work, efforts has been made to acquire vibration data on spindle housing using MEMS Accelerometer, measure surface finish and analyse the influence of cutting parameters on machine tool vibration and surface finish using ANOVA technique and also predict the surface roughness using ANN. Here the ANOVA results for full factorial and taguchi design of experiments techniques has been compared and found that taguchi design of experiment is better and reliable to obtain optimal number of experiments. Further the cutting parameters are optimised using genetic algorithm approach, which are required to be sent to CNC machine to improve the surface roughness and control vibration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Dual-Axis MEMS Accelerometers for Machine Tools Vibration Monitoring

With the development of intelligent machine tools, monitoring the vibration by the accelerometer is an important issue. Accelerometers used for measuring vibration signals during milling processes require the characteristics of high sensitivity, high resolution, and high bandwidth. A commonly used accelerometer is the lead zirconate titanate (PZT) type; however, integrating it into intelligent ...

متن کامل

Performance evaluation of factors affecting cutting forces on CNC Milling using Digraph and Matrix method

Machinability aspect is of considerable importance for efficient process planning in manufacturing. Machinability of an engineering material may be evaluated in terms of the process output variables like material removal rate, processed surface finish, cutting forces, tool life, specific power consumption, etc. In this paper, graph theoretic approach (GTA) is proposed to evaluate the cutting fo...

متن کامل

Prediction Model for CNC Turning on AISI316 with Single and Multilayered Cutting tool Using Box Behnken Design (RESEARCH NOTE)

Austenitic stainless steels (AISI316) are used for many commercial and industrial applications for their excellent corrosive resistance. AISI316 is generally difficult to machine material due to their high strength and high work hardening tendency. Tool wear (TW) and surface roughness (SR) are broadly considered the most challenging phases causing poor quality in machining. Optimization of cutt...

متن کامل

Investigation on Process Parameters of Ball Screw Finishing Using Magnetic Abrasive Field

Surface finishing is one of the most significant steps in industries which are engaged with surface quality. Finishing by magnetic field is a new method of surface finishing. In this process, machining is executed in mechanical way and semi-homogeneous abrasive slurry performs finishing of surfaces. Needed force to grind surfaces is made by magnetic field. Therefor this method is considered as ...

متن کامل

A Fuzzy Logic Based Model to Predict Surface Roughness of A Machined Surface in Glass Milling Operation Using CBN Grinding Tool

Nowadays, the demand for high product quality focuses extensive attention to the quality of machined surface. The (CNC) milling machine facilities provides a wide variety of parameters set-up, making the machining process on the glass excellent in manufacturing complicated special products compared to other machining processes. However, the application of grinding process on the CNC milling mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014